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1946 : Rickart studied C∗-algebras (i.e, Banach algebras with an
involution ∗ such that ∥xx∗∥ = ∥x∥2) in which the right annihilator
of any element is generated by a projection (e∗ = e, e2 = e).
(named Rickart C∗-algebras by Kaplansky later.)

1951 : Kaplansky defined AW∗-algebras: C∗-algebras in which the right
annihilator of any subset is generated by a projection.

1955 : Kaplansky defined Baer*-rings and Baer rings:
A Baer*-ring (resp. Baer ring) is a ∗-ring (resp. ring) in which
the right annihilator of any subset is generated by a projection
(resp. an idempotent).

1960 : Maeda defined Rickart rings (known as p.p. rings)
Also, defined by Kaplansky, Hattori (1960): A ring is called right
Rickart if the right annihilator of any single element is generated by
an idempotent, equivalently, any principal right ideal is projective.

1967 : Clark defined quasi-Baer rings:
A ring R is called quasi-Baer if the right annihilator of any 2-sided
ideal is generated by an idempotent.
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One application of quasi-Baer ring hulls of semiprime rings has been that
these hulls establish useful connections of quasi-Baer rings to C∗-algebras
in Functional Analysis.

Theorem (2009, Birkenmeier, Park, Rizvi)
A unital C∗-algebra R is boundedly centrally closed iff
R is a quasi-AW∗-algebra.

∴ the local multiplier algebra of a C∗-algebra is always a quasi-Baer ring.
Consequently, a C∗-algebra whose local multiplier algebra is a C∗-direct
product of prime C∗-algebras can be fully characterized.

Let M be a right R-module and S = EndR(M).

Definition (2004, Rizvi, Roman)
A module MR is called Baer module if for any left ideal I of S, rM(I) = fM
for some f2 = f ∈ S, where rM(I) = {m ∈ M | Im = 0}.
Equivalently, a module MR is Baer if, for any NR ≤ MR, there exists
e2 = e ∈ S such that ℓS(N) = Se, where ℓS(N) = {f ∈ S | f(N) = 0}.
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Definition (2007, Rizvi, Roman)
A module MR is called a Rickart module if for each ϕ ∈ S,
rM(ϕ) = Ker(ϕ) = eM for some e2 = e ∈ S.

Definition (2004, Rizvi, Roman)
A module MR is called a quasi-Baer module if, for any ideal J of S,
rM(J) = fM for some f2 = f ∈ S.
Equiv., MR is quasi-Baer if, for each fully invariant submodule N of M,
ℓS(N) = Se for some e2 = e ∈ S.

It has been of interest to investigate finite dimensional algebras over an
arbitrary algebraically closed field.
Clark initially defined a quasi-Baer ring to help characterize a finite
dimensional algebra over an algebraically closed field to be a twisted
semigroup algebra.
Historically, it is of interest to note that the Hamilton quaternion division
algebra over the real number field R is a twisted group algebra of the
Klein four group V4 over R.
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Definition (2013, Birkenmeier, Park, Rizvi)
Let MR be a module. We fix an injective hull E(MR) of MR. Let M be a
class of modules. We call, when it exists, a module HR the M hull of MR
if HR is the smallest extension of MR in E(MR) that belongs to M.

Notation We use qB(−), Ric(−), B(−), Ex(−), and FI(−) to denote
the quasi-Baer module hull, the Rickart module hull, the Baer module
hull, the extending module hull, and the FI-extending module hull of a
module, respectively it they exist.

Definition
For a given module M, the smallest quasi-Baer (resp., Rickart)
overmodule of M in E(M) is called the quasi-Baer (resp., Rickart )
module hull of M.
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Definition (2013, Armendariz, Birkenmeier, Park)
A ring R is called ideal intrinsic over Cen(R)
if I

∩
Cen(R) ̸= 0 for any 0 ̸= I E R.

1. For a semiprime ring R which is ideal intrinsic over Cen(R),
it is known that R is left (right) nonsingular by [1, Proposition 1.2].
2. If a ring R is semiprime PI, then R is ideal intrinsic over Cen(R)
([3, Theorem 1.17]).
Recall that a ring R is called a PI-ring if R satisfies a polynomial identity.
Note
(i) If a ring R is semiprime, then the ring RB(Q(R)) is
the smallest quasi-Baer intermediate ring between R and Q(R).
(ii) If a ring R is reduced, then RB(Q(R)) is reduced,
so RB(Q(R)) is a Baer ring since any reduced quasi-Baer ring is Baer.
Therefore, RB(Q(R)) is the smallest Baer ring between R and Q(R),
that is, the Baer ring hull of R.
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Theorem (2018, Lee, Park, Rizvi, Roman)
Let a ring R be semiprime and ideal intrinsic over Cen(R), n be a positive
integer, and e2 = e ∈ End(R(n)

R ). Then qB(eR(n)
R ) = eRB(Q(R))(n)R .

Therefore, any finitely generated projective module over R has
a quasi-Baer hull.

Corollary
Let a ring R be semiprime and ideal intrinsic over Cen(R), and let PR be
a finitely generated projective module over R. Then qB(PR) = FI(PR).
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The following example illustrates that the previous results do not hold for
the existence of the Baer hull or the Rickart hull of a finitely generated
projective module over a ring R even when R is a commutative domain.

Example
Let R be a commutative domain and n an integer with n > 1. Then:
(i) R(n)

R has a Baer hull if and only if R is a Prüfer domain.
(ii) Similarly, R(n)

R has a Rickart hull if and only if R is a Prüfer domain.
Hence (Z[x] ⊕ Z[x])Z[x] has no Rickart hull.

Recall that a commutative domain R is called Prüfer
if R is semihereditary (i.e., every finitely generated ideal is projective).
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Corollary
Assume that A is a Boolean ring and R = Matk(A), where k is a positive
integer. Let PR be a finitely generated projective module over R. Then:
(i) PR has a Baer hull.
(ii) PR has an extending hull.
(iii) The quasi-Baer hull, the Baer hull, the injective hull,
the quasi-injective hull, the continuous hull, the quasi-continuous hull,
the extending hull, and the FI-extending hull of PR all exist and coincide.

Let A be a Boolean ring and R = Matk(A), k a positive integer.
Assume that PR is a finitely generated projective module over R.
In view of the above corollary, one may expect that qB(RR) = Ric(PR)?

Example
Let A = {(an) ∈

∏∞
n=1 Z2 | an is eventually constant}. Then A is a

Boolean ring. Put R = Matk(A), where k is any positive integer.
We note that Q(Matk(A)) = Matk(Q(A)) and Q(A) =

∏∞
n=1 Z2.

∴ qB(RR) = B(RR) = Ex(RR) = FI(RR) = E(RR) = Matk(
∏∞

n=1 Z2).
Since A is a Boolean ring, R is von Neumann regular, so RR is Rickart.
Thus Ric(RR) = RR ̸= E(RR). Therefore qB(RR) ̸= Ric(RR)
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Lemma
Let R be a Dedekind domain which is not a field. Assume that M is an
R-module such that AnnR(M) ̸= 0, and {Ki | i ∈ Λ} is a set of nonzero
submodules of FR, where F is the field of fractions of R.
Put NR = MR ⊕ (

⊕
i∈Λ Ki)R. Then we have the following.

(i) If NR has a quasi-Baer or a Rickart essential extension,
then MR is semisimple.
(ii) MR ⊕ E[(

⊕
i∈Λ Ki)R] is a (quasi-)Baer module if and only if

MR ⊕ E[(
⊕

i∈Λ Ki)R] is a Rickart module if and only if MR is semisimple.

Theorem (2018, Lee, Park, Rizvi, Roman)
Let R be a Dedekind domain. Assume that M is an R-module such that
I := AnnR(M) ̸= 0, and {Ki | i ∈ Λ} is a set of nonzero submodules of FR,
where F is the field of fractions of R. Then the following are equivalent.
(i) MR ⊕ (

⊕
i∈Λ Ki)R has a quasi-Baer hull.

(ii) MR is semisimple.
In this case, qB(MR ⊕ (

⊕
i∈Λ Ki)R) = MR ⊕ (

⊕
i∈Λ KiT(I))R, where

T(I) is the Nagata transform of I. Further, T(I) = R[q1, q2, . . . , qn],
where 1 =

∑n
k=1 akqk with ak ∈ I and qk ∈ I−1, 1 ≤ k ≤ n.
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Assume that R is a commutative domain with the field of fractions F.
Let B be a nonzero ideal of R. We put B0 = R.
For each 0 ≤ ℓ, let [R : Bℓ] = (Bℓ)−1 = {q ∈ F | qBℓ ⊂ R}.
We take T(B) =

∪
ℓ≥0 [R : Bℓ]. Then

T(B) =
∑
ℓ≥0

[R : Bℓ] =
∑
ℓ≥0

(Bℓ)−1

since R = [R : B0] ⊆ [R : B] ⊆ [R : B2] ⊆ . . . .
T(B) is an intermediate domain between R and the field of fractions of R.
T(B) is called the Nagata transform (or ideal transform ) of B
(see [13, p.490] and [15, p.325]).
For an invertible ideal I of R, let I−2 = I−1I−1, I−3 = I−1I−1I−1, and so
on.
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Corollary
Let R be a Dedekind domain. Assume that N is an R-module with
N/t(N) projective and AnnR(t(N)) ̸= 0.
Then the following are equivalent.
(i) N has a quasi-Baer hull.
(ii) t(N) is semisimple.

Let R be a semiprime PI-ring and PR be a finitely generated projective
module. Then qB(PR) = FI(PR) from the previous result.
However, these two hulls do not coincide for the case of finitely generated
modules over Z.

Example
Let N = Zp ⊕ Z, where p is a prime integer.
Then FI(N) = N because N itself is an FI-extending Z-module.
However, qB(N) = Zp ⊕ Z[1/p].
So N is finitely generated, but qB(N) ̸= FI(N).
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Theorem (2018, Lee, Park, Rizvi, Roman)
Let R be a Dedekind domain.
Assume that M is an R-module with I := AnnR(M) ̸= 0,
and let {Ki | i ∈ Λ} be a set of nonzero fractional ideals of R.
We put NR = MR ⊕ (

⊕
i∈Λ Ki)R. Then the following are equivalent.

(i) N has a quasi-Baer hull.
(ii) N has a Rickart hull.
(iii) M is semisimple.
(iv) MR ⊕ E[(

⊕
i∈Λ Ki)R] is a Baer module.

In this case, qB(NR) = Ric(NR) = MR ⊕ (
⊕

i∈Λ KiT(I))R,
where T(I) is the Nagata transform of I.
Further, T(I) = R[q1, q2, . . . , qn], where 1 =

∑n
k=1 akqk with ak ∈ I

and qk ∈ I−1, 1 ≤ k ≤ n.
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Theorem (2018, Lee, Park, Rizvi, Roman)
Let R be a Dedekind domain. Assume that N is an R-module
with N/t(N) projective and AnnR(t(N)) ̸= 0.
Then the following are equivalent.
(i) N has a quasi-Baer hull.
(ii) N has a Rickart hull.
(iii) t(N) is semisimple.
(iv) t(N) ⊕ E(N/t(N)) is a Baer module.
In this case, qB(NR) = Ric(NR) ∼= t(N)

⊕
(N/t(N))T(I) ∼=

(
⊕

i∈Γ R/Pi)R ⊕ (
⊕

i∈Λ KiT(I))R,
where T(I) is the Nagata transform of I := AnnR(t(N)).
Further, T(I) = R[q1, q2, . . . , qn],
where 1 =

∑n
k=1 akqk with ak ∈ I and qk ∈ I−1, 1 ≤ k ≤ n.
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Corollary
Let R be a commutative PID.
Assume that M is an R-module with AnnR(M) ̸= 0, and Λ is any set.
Put N = MR ⊕ R(Λ)

R . Then the following are equivalent.
(i) N has a quasi-Baer hull.
(ii) N has a Rickart hull.
(iii) M is semisimple.
(iv) M ⊕ E(N/t(N)) is a Baer module.
In this case, qB(NR) = Ric(NR) = MR ⊕ R[1/a](Λ)R ,
where AnnR(M) = aR.
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Corollary
Let R be a Dedekind domain. Assume that N is an R-module with
N/t(N) finitely generated and AnnR(t(N)) ̸= 0.
Then the following are equivalent.
(i) N has a quasi-Baer hull.
(ii) N has a Rickart hull
(iii) N has a Baer hull.
(iv) t(N) is semisimple.
(v) t(N) ⊕ E(N/t(N)) is a Baer module.
In this case, qB(N) = Ric(N) = B(N).

Gangyong Lee: Quasi-Baer module hulls and examples Chungnam National University, Assistant Professor



The following example illustrates the previous results.

Example
Let Γi, i = 1, 2, 3, are nonempty sets, and let M = Z(Γ1)

2 ⊕ Z(Γ2)
3 ⊕ Z(Γ3)

5 .
(i) For any positive integer m, let Vm = M ⊕ Z(m). Then
qB(Vm) = Ric(Vm) = B(N) = M ⊕ Z[1/30](m) as AnnZ(M) = 30Z.
(ii) For any nonempty set Ω, let NΩ = M ⊕ Z(Ω).
Then qB(NΩ) = Ric(NΩ) = M ⊕ Z[1/30](Ω) as AnnZ(M) = 30Z.
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Example
Assume that M =

⊕n
i=1 Zpi , where n is a positive integer, and all pi are

prime integers. Say p1, p2, . . . , ps are all the distinct prime integers in
{p1, p2, . . . , pn}. Let a = p1p2 · · · ps.
Then there exists a set Λ (necessarily infinite) such that:
(i) M ⊕ Z[1/a](Λ) is not a Baer Z-module.
(ii) M ⊕ Z(Λ) has no Baer hull.
In contrast to (i) and (ii), we have the following.
(iii) qB(M ⊕ Z(Λ)) = Ric(M ⊕ Z(Λ)) = M ⊕ Z[1/a](Λ).
Furthermore, the quasi-Baer (resp., Rickart) module hull of a direct sum
of two modules is not isomorphic to the direct sum of their quasi-Baer
(resp., Rickart) module hulls (if each hull exists).
(iv) qB(M ⊕ Z(Λ)) ̸∼= qB(M) ⊕ qB(Z(Λ))
and Ric(M ⊕ Z(Λ)) ̸∼= Ric(M) ⊕ Ric(Z(Λ)).
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Theorem
Let R be a Dedekind domain and N be a finitely generated R-module.
Then the following are equivalent.
(i) N is quasi-Baer.
(ii) N is Rickart.
(iii) N is Baer.
(iv) N is semisimple or torsion-free.

Theorem
Let R be a Dedekind domain and N be a direct sum of finitely generated
R-modules. Then the following are equivalent.
(i) N is quasi-Baer.
(ii) N is Rickart.
(iii) N is semisimple or torsion-free.
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Thank you
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